LATIHAN PAS MATEMATIKA KELAS 11
Nama : Gathan Darmawan (13)
Kelas : XI IPS 3
Premis 1 : Jika masyarakat membuang sampah pada tempatnya maka lingkungan bersih.
Premis 2 : Jika lingkungan bersih maka hidup akan nyaman.
Ditanya : Kesimpulan dari kedua premis tsb?
Jawab :





(Benar)
2) asumsikan benar untuk
(
3) cek kebenaran untuk
akan terbukti benar jika
bisa buktikan itu dengan induksi lagi
buktikan bahwa
1) cek kebenaran untuk
(benar)
2) asumsikan benar untuk
3) cek kebenaran untuk
terbukti bahwa
maka pernyataan awal tadi juga benar
- n_ >5 = {1,2,3,4,5}
x | 0 | 3 |
y | 5 | 0 |
(x,y) | (0,5) | (3,0) |
x | 0 | 3 |
y | 5 | 0 |
(x,y) | (0,5) | (3,0) |

LANGKAH PERTAMA (I)
Buatlah sistem pertidaksamaan pada setiap garis dengan menggunakan cara sebagai berikut :
Persamaan garis I melalui titik (0,6) dan (10,0) sehingga :
ax + by = ab
6x + 10y = 6.10
6x + 10y = 60 .... (÷2)
3x + 5y = 30
Kemudian perhatikan daerah arsiran yang mengarah ke bawah atau melalui titik (0,0). Jika arsiran melalui titik (0,0) maka jika diuji titik (0,0) pernyataan dikatakan benar :
3x + 5y = 30
3.0 + 5.0 = 30
0 + 0 = 30
0 ≤ 30 (Benar)
Pertidaksamaannya : 3x + 5y ≤ 30
Persamaan garis II melalui titik (0,-4) dan (2,0) sehingga :
ax + by = ab
-4x + 2y = (-4).2
-4x + 2y = -8 .... (÷ 2)
-2x + y = -4
Kemudian perhatikan daerah arsiran yang mengarah ke sisi kiri atau melalui titik (0,0). Jika arsiran melalui titik (0,0) maka jika diuji titik (0,0) pernyataan dikatakan benar :
-2x + y = -4
(-2).0 + 0 = -4
0 + 0 = -4
0 ≥ -4 (Benar)
Pertidaksamaannya :
-2x + y ≥ -4 .... (× -1)
2x - y ≤ 4
Kemudian pada arsiran juga terdapat garis x ≥ 0 dan y ≥ 0.
Sehingga pertidaksamaannya adalah :
3x + 5y ≤ 30 ; 2x - y ≤ 4 ; x ≥ 0 dan y ≥ 0.
MODEL | POLOS | GARIS | HARGA |
x | 1 | 3 | Rp 150.000 |
y | 2 | 1 | Rp 100.000 |
Stok | 20 | 20 | Maksimum |
Diket :
Ditanya:
det C...?
Jawab :
- mencari matriks C
- mencari det C
det C = (3)(3) - (-6)(8)
= 9 + 48
det C = 57
Jadi, determinan dari matriks C adalah 57.
Diketahui :
A =
Matriks A tidak mempunyai invers
Ditanyakan :
x = .... ?
Jawab :
Jadi,
|A| = 0
(2x + 1)(5) – 3(6x – 1) = 0
10x + 5 – 18x + 3 = 0
8 – 8x = 0
8 = 8x
x =
x = 1

- Agar lebih mudah dalam membuat matriks produksi, pertama kita akan membuat tabel produksi untuk masing-masing pabrik sebagai berikut.
Sehingga, kita mendapatkan matriks-matriks produksi S dan M sebagai berikut. - Dari matriks yang diperoleh dari poin 1, kita dapat menghitung banyaknya pakaian yang telah diproduksi oleh pabrik di Surabaya. Banyaknya kaos yang telah diproduksi adalah 7.820, sedangkan banyaknya jaket yang sudah diproduksi adalah 4.120. Selanjutnya, banyaknya kaos yang diproduksi oleh pabrik di Malang adalah 8.820, sedangkan banyaknya jaket yang telah diproduksi adalah 7.020.
- Diketahui perkiraan peningkatan produksinya adalah 4% = 0,04. Artinya, jika n adalah banyaknya produksi pakaian tahun kemarin, maka banyaknya produksi pada tahun ini adalah n + 0,04n = 1,04n. Sehingga, matriks produksi pada tahun depan dapat ditentukan dengan menggunakan perkalian skalar sebagai berikut.
Sehingga dari matriks di atas kita mendapatkan perkiraan banyaknya pakaian yang akan diproduksi oleh JCloth di pabrik Surabaya ataupun Malang. Pabrik di Surabaya akan memproduksi kaos kurang lebih 3.973 kualitas standard, 2.558 kualitas deluxe, dan 1.602 kualitas premium serta memproduksi jaket sebanyak 2.038 kualitas standard, 1.290 kualitas deluxe, dan 956,8 kualitas premium. Sedangkan pada, pabrik di Malang akan memproduksi kaos sebanyak 4.389 kualitas standard, 3.078 kualitas deluxe, 1.706 kualitas premium serta meproduksi jaket sebanyak 3.078 kualitas standard, 3.370 kualitas deluxe, dan 852,8 kualitas premium pada periode yang sama. - Untuk menentukan banyaknya total pakaian yang diproduksi oleh JCloth, kita jumlahkan matriks S’ dengan M’ seperti berikut.
Dari penjumlahan matriks di atas, kita memperoleh informasi banyaknya pakaian yang akan diproduksi oleh JCloth. Dengan menjumlahkan semua elemen-elemen matriks penjumlahan tersebut, kita peroleh bahwa banyaknya pakaian yang akan diproduksi oleh JCloth kurang lebih 28.142.

25. Pembahasan
x + y = 16
3x + 4y = 55
Jika ditulis dalam bentuk matriks :
Jadi, Lisa bekerja selama 9 jam sedangkan Muri bekerja selama 7 jam.
26. Pembahasan
- Bayangan titik A(4, 6) karena refleksi terhadap garis y = 2, yang kemidian di lanjutkan dengan refleksi terhadap garis x = -1
Penyelesaian Soal
Bayangan titik A (-1, 4) oleh refleksi terhadap garis y= -x
Pencerminan terhadap garis y = -x
A(a, b) → gr y = -x → A'(-b, -a)
A(-1, 4) → gr y = -x → A'(-4, -(-1)) = (-4, 1)
27. Pembahasan
(x, y) dicerminkan thp sumbu x : (x, -y) kemudian
29. pembahasan
Step-1 pencerminan garis x = k
Untuk x = 2
(x' , y') = (2(2) - x, y)
(x' , y') = (4 - x, y) akan disubtitusi ke Step-2
Step-2 translasi (- 3, 4)
Translasi (a, b) dengan a = -3 dan b = 4.
(x", y") = (x' + (- 3), y' + 4)
(x", y") = (4 - x + (- 3), y + 4)
(x", y") = (1 - x, y + 4)
Sehingga, x" = 1 - x dan y" = y + 4
Setelah diatur dengan pindah ruas menjadi
Substitusikan ke bentuk awal x²+ y² = 4
⇔ (1 - x")² + (y" - 4)² = 4
Selanjutnya tanda aksen dapat dihilangkan
⇔ (1 - x)² + (y - 4)² = 4
⇔ x² - 2x + 1 + y² - 8y + 16 = 4
⇔ x² + y² - 2x - 8y + 1 + 16 - 4 = 0
Kesimpulan
Dari langkah-langkah pengerjaan di atas, diperoleh persamaan bayangan lingkaran
30. Pembahasan
A(3,-2)
dipetakan oleh T(1 -2)
x' = x + 1 = 3 + 1 = 4
y' = y + (-2) = -2 + (-2) = -4
Bayangan A = A' = (4,-4)
lanjut rotasi [O , 90°]
x" = -y' = -(-4) = 4
y" = x' = 4
Bayangan akhir = A" = (4,4)
31. Pembahasan
36. Pembahasan
U1,U2,U3,...
50.000, 55.000, 60.000,....
maka
a=50.000
b=5.000(beda per bulan)
yg ditanyakan=jumlah tabungan dlm 2 tahun, maka jumlah tabungan dalam 24 bulan
maka
Sn=n/2(a+Un)
cari Un dulu
Un=a+(n-1)b
U24 =50.000+(24-1)5.000
U24=50.000+23x5.000
U24=50.000 + 115.000
U24=165.000
lalu
Sn=n/2(a+Un)
S24=24/2(50.000+165.000)
S24=12(215.000)
S24=2.580.000
37.Pembahasan
sebuah mobil dibeli dengan harga rp 80.000.000,00.setiap tahun nilai jualnya menjadi 3/4 dari harga sebelumnya.nilai jual setelah dipakai 3 tahun adalah...
PEMBAHASAN
Diketahui :
- Harga beli (a) = Rp80.000.000
- Nilai jual (r) = 3/4
Ditanya : nilai jual setelah 3 tahun (U₄) = . . . ?
Jawab :
Nilai jual setelah 3 tahun adalah U₄ karena kita gunakan U₁ = 0 tahun.
Sehingga, nilai jual setelah dipakai 3 tahun
Kesimpulan : Jadi, harga jual mobil tersebut setelah dipakai 3 tahun adalah Rp33.750.000,00.
38. Pembahasan
Diketahui deret geometri dengan suku pertama 6 dan suku keempat adalah 48. Jumlah enam suku pertama deret tersebut adalah ...
Diketahui suatu barisan aritmatika dengan U3+U9+U11= 75. suku tengah barisan tersebut adalah 68 dan banyak sukunya 43 maka U43 bernilai...
a + 2b + a + 8b + a + 10b = 75
3a + 20b = 75
suku tengah adalah 22 atau a + 21b = 68 kali 3
3a + 20b = 75
3a + 63b = 204 _
43b = 129
b = 3
a + 21b = 68
a + 21 . 3 = 68
a = 68 - 63
a = 5
u43 = a + 42b
= 5 + 42 . 3
= 5 + 126
= 131
40.Pembahasan
uang sebesar Rp5000.000,00 diinvestasikan selama empat tahun dengan sistem bunga majemuk sebesar 5%. Tentukanlah besarnya uamg tersebut setelah akhir tahun ke empat...
dik. -. modal awal Rp.5.000.000 (Nt)
-. bunga majemuk 5% (i)
-. jangka waktu 4th (n)
dit. nilai akhir modal setelah 4th (Na)
jawab
Na = Nt (1 + i)pangkat n
Na = 5.000.000 (1 +(5/100))pangkat 4
Na = 5.000.000 (1 + 0.05)pangkat 4
Na = 5.000.000 (1.05)pangkat 4
Na = 5.000.000 x 1.2155
Na = 6.077.531,25
jadi nilai akhir modal setelah 4th adalah Rp.6.077.531,25
Komentar
Posting Komentar