LATIHAN PTS MATEMATIKA KELAS 11
Nama : Gathan Darmawan (13)
Kelas : XI IPS 3
QUESTION 1
1.premis 1 : jika masyarakat membuang sampah pada tempatnya maka lingkungan bersih.premis 2: jika lingkungan bersih maka hidup akan nyaman.kesimpulan yang sah dari kedua premister tersebut adalah...
jika masyarakat membuang sampah pada tempatnya maka hidup akan nyaman
2.Buktikan bahwa : 1+3+5+...+ (2n-1) =n2
angkah induksi
1) n = 1
2) n = k
3) n = k + 1
1 + 3 + 5 + . . . + (2n - 1 ) = n²
i) n = 1
2(1) - 1 = 1²
2 - 1 = 1
1 = 1 (benar)
ii) n = k
1 + 3 + 5 + . . . + (2k - 1) = k²
iii) 1 + 3 + 5 + . . . + (2k - 1) + {2(k +1) -1 } = (k+1)²
k² + 2k + 2 - 1 = k² + 2k + 1
k² + 2k + 1 = k² + 2k + 1
3.Tunjukan bahwa dalam barisan geometri yang disebut di no.3 dengan r adalah rasio barisan..terbukti benar
1) buktikan kebenaran untuk
(Benar)
2) asumsikan benar untuk
,
( menunjukkan bahwa merupakan kelipatan 9)
3) cek kebenaran untuk
akan terbukti benar jika habis dibagi 9
bisa buktikan itu dengan induksi lagi
buktikan bahwa habis dibagi 9
1) cek kebenaran untuk
(benar)
2) asumsikan benar untuk
3) cek kebenaran untuk
terbukti bahwa habis dibagi 9 benar
maka pernyataan awal tadi juga benar
7.Buktikan untuk masing masing bilangan asli n _> 5 akan berlaku 2n-3<2n-2
Penjelasan dengan langkah-langkah:
n_>5={1,2,3,4,5}
2n-3<2n-2
=2(1)-3<2(1)-2
=(-1)<0(benar)
2(2) -3<2(2) -2
=1<2 (benar)
2(3) -3<2(3) -2
=3<4(benar)
2(4) -3<2(4) -2
=5<6( benar)
2(5) -3<2(5) -2
=7<8( benar)
8.penyelesaian dari sistem persamaan 2x-3y=-13 dan x+2y=4 adalah?
persamaan x+2y=4 kita kalikan dengan 2, maka menjadi
2x+4y = 8 -------> (persamaan 1)
2x-3y = -13 ------> (persamaan 2)
--------------- - (dikurangi)
7y = 21
y = 21/7
y = 3
nilai y = 3 kita masukkan kdlam salah satu persamaan di atas, misalkan pada
persamaan x+2y = 4,
x+2.3 = 4
x+6 = 4
x = 4-6
x = -2
jadi penyelesainnya adlh x= -2 dan y = 3
9.Harga 5 kg gula dan 30 kg beras adalah Rp410.000,00, sedangkan harga 2 kg gula dan 60 kg beras adalah Rp740.000,00. Harga 2 kg gula dan 5 kg beras adalah
gula = x
beras = y
5x + 30y = 410.000 |*2
2x + 60y = 740.000 |*1
10x + 60y = 820.000
2x + 60y = 740.000
_________________-
8x = 80.000
x = 10.000
subtitusikan x nya ke persamaan
2x + 60y = 740.000
2(10.000) + 60y = 740.000
20.000 + 60y = 740.000
60y = 720.000
y = 12.000
jadi, harga 1kg gula = Rp 10.000 dan 1kg beras = Rp 12.000
maka 2kg gula dan 5kg beras
= 2(10.000) + 5(12.000)
= 20.000 + 60.000
= Rp 80.000
10. Tentukan daerah bersih dari pertidaksamaan linear berikut 5x+3y <15
Untuk x = 0
5x + 3y = 15
5 (0) + 3y = 15
3y = 15
y =
y = 5 titik (0, 5)
Untuk y = 0
5x + 3y = 15
5x + 3 (0) = 15
5x = 15
x =
x = 3 titik (3, 0)
Jadi garis 5x + 3y = 15 melalui titik (0, 5) dan (3, 0)
11.Tentukan daerah kotor dari pertidaksamaan linear berikut 2x-5y > 20
Penjelasan dengan langkah-langkah:
2x-5y>20
titik potong di y
x=0
2(0)-5y>20
-5y>20
y<20/-5
y<-4
Hp { 0,-4}
titik potong di x
y=0
2x-5(0)>20
2x>20
x>20/2
x>10
Hp {10,0}
Hp{ 10,0 ; 0.-4}
QUESTION 2
12.Daerah penyelesaian sistem pertidaksamaan 5x + 6y ≥ 30; -2x + y ≤ 0 ; y ≥ 2 ditunjukan oleh daerah... 3
Jadi, nilai maksimum dicapai pada titik (5,0) yaitu: 3 . 5 + 2 . 0 = 15.
- Model I memerlukan 1 m kain polos dan 3 m kain bergaris.
- Model II memerlukan 2 m kain polos dan 1 m kain bergaris.
- Persediaan kain polos 20 m
- persediaan kain bergaris 20 m
- Harga jual model I Rp.150.000,00
- Harga jual model II Rp.100.000,00
- Penghasilan maksimum yang dapat diperoleh = ...
(1) Kita Buat Tabel Untuk memudahkan:
Model || Polos || Garis || Harga
I || 1 || 3 || 150.000
II || 2 || 1 || 100.000
Stok || 20 || 20 || maksimum
(2) Kita buat kalimat matematika dari Tabel diatas Dengan kain polos sebagai (x) dan kain bergaris sebagai (y) :
x + 2y ≤ 20
3x + y ≤ 20
dengan :
x ≥ 0
y ≥ 0
Dan Fungsi Tujuan adalah harga jual :
150.000x + 100.000y
(3) Tentukan nilai fungsi x dan y pada grafik fungsi :
Dari x + 2y = 20 :
x = 0, y ⇒ 0 + 2y = 20
⇒ 2y = 20
⇒ y = 20/2
⇒ y = 10
Titik Koordinat ⇒ (0,10)
y = 0, x ⇒ x + 2y = 20
⇒ x + 0 = 20
⇒ x = 20
Titik Koordinat ⇒(20,0)
Dari 3x + y = 20
x = 0 , y ⇒ 3x + y = 20
⇒ 0 + y = 20
Titik Koordinat ⇒ (0,20)
y = 0, x ⇒ 3x + y = 20
⇒ 3x + 0 = 20
⇒ 3x = 20
⇒ x = 20/3
Titik Koordinat ⇒ (20/3,0)
Dari Titik - titik tersebut tarik garis lurus hingga terhubung.
Lalu kita cari titik potong dari garis tersebut, dengan metode eliminasi dan subtitusi :
Eliminasi y :
x + 2y = 20 | x 1 | x + 2y = 20
3x + y = 20 | x 2 | 6x + 2y = 40
============ -
-5x = -20
x = 20/5
x = 4
Subtitusikan nilai x pada persamaan 3x + y = 20 :
3 . 4 + y = 20
12 + y = 20
y = 20 - 12
y = 8
Koordinat titik potong garis pada (4,8)
(4) Selanjutnya Dari Titik - titik yang berpotongan kita uji dengan :
Fungsi Tujuan f(x,y) = 150.000x + 100.000y :
Ada 3 titik pada Grafik (perhatikan lampiran)
A. Titik (0,10) = 150.000 . (0) + 100.000 . (10) =
= 0 + 1.000.000 = 1.000.000
B. Titik (4,8) = 150.000 . (4) + 100.000 . (8) =
= 600.000 + 800.000 = 1.400.000
C. Titik (20/3,0) = 150.000 . (20/3) + 100.000 . (0) =
= 1.000.000 + 0 = 1.000.000
Dari Hasil Uji diatas dapat dilihat, penghasilan terbesar pada titik (4,8) yaitu sebesar Rp.1.400.000,00
17.Diketahui matriks A = ( 2 3 -1 4 ) dan matriks B = ( 1 4 -2 5 ). Jika matriks C = 2A^t - B maka determinan dari matriks C adalah....
Jika diketahui matriks , , dan ,maka determinan dari matriks C adalah 57.
Pembahasan
Matriks adalah susunan beberapa bilangan dalam bentuk persegi panjang yang diatur menurut baris dan kolom.
Ordo matriks adalah ukuran dari suatu matriks yang ditentukan oleh banyaknya baris dan kolom dari suatu matriks. Misalkan matriks A mempunyai m baris dan n kolom, maka ordo matriks A adalah m x n.
Transpos matriks adalah mengubah baris matriks A menjadi kolom matriks sehingga matriks A dengan ordo m x n akan menjadi matriks transpos A' dengan ordo n x m.
Determinan matriks A dilambangkan dengan det A atau |A|. Untuk menentukan determinan matriks dapat digunakan sebagai berikut.
1. Matriks berordo 2 x 2
Jika matriks , maka
det A = |A| =
2. Matriks berordo 3 x 3
Jika matriks
, maka
determinan A dapat ditentukan dengan menggunakan aturan Sarrus:
= a₁₁ a₂₂ a₃₃ + a₁₂ a₂₃ a₃₁ + a₁₃ a₂₁ a₃₂ - a₁₃ a₂₂ a₃₁ - a₁₁ a₂₃ a₃₂ - a₁₂ a₂₁ a₃₃
Penyelesaian
diket:
ditanya:
det C...?
jawab:
- mencari transpos matrisk A
⇒
- mencari matriks C
- mencari det C
det C = (3)(3) - (-6)(8)
= 9 + 48
det C = 57
Diketahui
A =
Matriks A tidak mempunyai invers
Ditanyakan
x = .... ?
Jawab
Suatu matriks tidak mempunyai invers jika determinan matriks tersebut sama dengan nol
Jadi
|A| = 0
(2x + 1)(5) – 3(6x – 1) = 0
10x + 5 – 18x + 3 = 0
8 – 8x = 0
8 = 8x
x =
x = 1
20.diketahui matriks a= ( 3, y, 5,-1) , b= ( x,5,-3,6), dan c = ( -3,-1, y, 9) . jika a+ b - c = ( 8, 5x, -x , -4) nilai x + 2xy + y adalah..22
Dari penjumlahan matriks di atas, kita memperoleh informasi banyaknya pakaian yang akan diproduksi oleh JCloth. Dengan menjumlahkan semua elemen-elemen matriks penjumlahan tersebut, kita peroleh bahwa banyaknya pakaian yang akan diproduksi oleh JCloth kurang lebih 28.142.
23.Arman membeli 5 pensil dan 3 penghapus, sedangkan susi membelu 4 pensil dan 2 penghapus di toko yang sama. Di kasir, arman membayar Rp. 11.500 sedangkan susi membayar RP. 9.000. Jika doni membeli 6 dan 5 penghapus, berapa ia harus membayar
x = pensil
y = penghapus
5x + 3 y = 11.500 (x2)
4x + 2 y = 9.000 (x3)
_______________
10x + 6 y = 23.000
12x + 6y = 27.000
_______________ (-)
-2x = -4.000
x = 2.000
4x + 2y = 9.000
4*2000 + 2y = 9000
2y = 1000
y = 500
jadi harga pensil = 2000 dan penghapus = 500
sehingga doni harus membayar 6*2000 + 5*500 = 12.000+2.500 = 14.500
24.Bu Ani seorang pengusaha makanan kecil yang menyetorkan dagangannya ke tiga kantin sekolah. Tabel banyaknya makanan yang disetorkan setiap harinya sebagai berikut. Kacang Keripik Permen Kantin A | 10 | 10 | 5 | Kantin B | 20 | 15 | 8 | Kantin C | 15 | 20 | 10 | (Dalam satuan bungkus) Harga sebungkus kacang, sebungkus keripik, dan sebungkus permen berturut-turut adalah Rp 2.000,00; Rp 3.000,00; dan Rp 1.000,00.Hitung pemasukan Bu Ani dari setiap kantin dengan cara perkalian matrik
Hitung pemasukan Bu Ani dari setiap kantin dengan cara perkalian matriks
Perkalian Matriks A dan Matriks B
AB =
AB =
Kantin A: Rp. 55.000,00
Kantin B: Rp. 93.000,00
Kantin C: Rp. 100.000,00
25.Lisa dan muri bekerja pada pabrik tas. Lisa dapar menyelesaikan 3 buah setiap jam dan muri dapat menyelesaikan 4 tas setiap jam jumlah jam kerja lisa dan muri adalah 16 jam sehari dengan jumlah tas yang dibuat oleh keduanya adalah 55 tas. Jika jam kerja keduanya berbeda, lisa bekerja selama x jam dan muri bekerja selama y jam, maka model matematika penyrlrsaian masalah tersebut menggunakan matriks adalah
Pembahasan:
x + y = 16
3x + 4y = 55
Jika ditulis dalam bentuk matriks:
Jadi, Lisa bekerja selama 9 jam sedangkan Muri bekerja selama 7 jam.
Komentar
Posting Komentar